BUFFALO RIVER, NY

SCOTT CIENIAWSKI, U.S. ENVIRONMENTAL PROTECTION AGENCY KRISTIN SEARCY BELL, RAMBOLL

Project Coordination

Great Lakes Legacy Act Project Sponsors

- Federal: USEPA GLNPO
- Non-Federal: Honeywell
- Non-Federal: Buffalo Niagara Waterkeeper

Project Coordination Team Members

- USEPA Region 2
- NY State Department of Environmental Conservation (NYSDEC)
- USACE Buffalo District
- US Fish & Wildlife

Site Setting

- Buffalo River, Buffalo, New York, drains into Lake Erie
- Urban river system, significantly altered over time
- Area of concern (AOC) = lower 6.2 miles of Buffalo River + 1.2 miles of City Ship Canal

Control of External Contaminant Sources

- Buffalo River sediment contamination resulted from a legacy of industrial operations along the river
- Much of the industrial activity has declined in the last 40 years
- Prior to remediation an evaluation was conducted to demonstrate contaminant sources to the river had been eliminated or controlled

Sediment Remediation

- Objectives
 - Achieve surface sediment remedial goals for the protection of benthos, fish, and wildlife
 - Support the removal of AOC beneficial use impairments (BUIs)
- Sediment remediation was conducted under the GLLA program, 2013-2015
 - CoCs: PAHs, mercury, lead, PCBs
 - Removal of ~450,000 CY of contaminated sediment
 - 5-acre cap in the City Ship Canal
 - 5 habitat restoration areas

Management of Dredge Residuals

- Buffalo River AOC is a low-energy, net-depositional system
- Natural deposition, rather than backfilling, was selected for the management of dredge residuals
- Verification monitoring was conducted to determine if remedial goals were achieved
 - Year 2 (2017)
 - Year 5 (2020)

Remedy Effectiveness Monitoring Elements

01

Bathymetric Surveys

- Sedimentation rates
- Cap monitoring

02

Surface Sediment Chemistry

- Discrete samples (total PAHs)
- Composite samples (mercury, lead and total PCBs)

03

Biological Monitoring

- Benthic community surveys
- Fish community surveys

Differential Bathymetry – Post Construction vs. Year 2

Habitat Fill Material Placed

Differential Bathymetry – Year 2 (2017) vs. Year 5 (2020)

City Ship Canal Cap Monitoring

- City Ship Canal cap remains stable
- Cap and habitat restoration area experienced deposition since construction (2014)
- Cap area designed as project aquatic vegetation restoration area
- Over 5 acres SAV bed successfully established by Year 5

10

Surface Sediment Chemistry

- Year 2 (2017) and Year 5 (2020) surface sediment chemistry
 - Discrete locations for total PAHs
 - Composite areas for PCBs, lead, mercury
 - Total organic carbon
 - Grain size
- Sediment chemistry results are compared to Buffalo River remedial goals

Chemical	Buffalo River Remedial Goals		
Total PAHs	1 toxicity unit (16 mg/kg)		
Lead	90 mg/kg SWAC		
Mercury	0.44 mg/kg SWAC		
Total PCBs	0.20 mg/kg SWAC		

Verification Monitoring, Surface Sediment Samples

	Number of Samples Collected ¹		
Year	PAHs	Composites ² for PCBs, Lead, Mercury	TOC and Grain Size
Year 2 (2017)	260	12	40
Year 5 (2020)	87	9	19
Total (Year 2 + Year 5)	347	21	59

1. Sample count includes field duplicates

2. Each composite sample represents ~40 discrete samples

Sediment PAH Concentrations – Year 2 and Year 5

Sediment PAH Concentrations – Year 2 and Year 5

Distribution of PAH Concentrations

Sediment Remedy Effectiveness Symposium

15

Composite Sample Approach for Area-Weighted COCs

- Composite areas = 1/3 mile segments of the river, bank to bank
- 40 samples targeted per composite (8x5 grid)
- Composite samples were collected from 11 areas
- Each composite sample analyzed for:
 - Lead
 - Mercury
 - Total PCBs

16

Sediment Chemistry - Composite Sample Results

Distribution of Composite Sample Results

Summary – Surface Sediment Conditions

Surface sediment CoC concentrations decreased continuously from construction through Year 2 to Year 5

- 95% of the PAH sample locations achieved remedial goal
 - Additional locations >RG are generally isolated, noncontiguous deposits
- Composite CoC concentrations decreased in every composite area
 - Composite areas achieved RGs or were within a factor of 2 above the composite-based RGs
 - Slower recovery in City Ship Canal due to lower deposition rates
- Surface sediment concentrations continue to decrease via natural sedimentation and dilution/mixing processes

19

Benthic Community Surveys

- 5 BR locations
- 2 reference locations
 - Cazenovia Creek
 - Tonawanda Creek
- Sediment grab and multi-plate samplers at each location
- Findings evaluated against USEPA and NYSDEC metrics

Benthic Community Findings

- Community is representative of a large-scale urban river system
- NYSDEC metrics All locations show moderate to severe impairment for both sediment grabs and multi-plate samples
- USEPA metrics Scores show variability across time (some higher, some lower, some unchanged)
- Reference locations (Cazenovia Creek and Tonawanda Creek) showed similar levels of impairment
- Toxicity test results from USGS showed Buffalo River sediment to be non-toxic

Fish Community Surveys

- 3 BR fish community areas + 1 BR reference
- Approaches evaluated
 - Index of Biological
 Integrity (IBI) approach
 - NYSDEC Fish Impairment approach
- 2017 and 2020 compared to baseline (2008 and 2012)

Fish Community Findings

Index of Biotic Integrity (IBI)

- Scores similar in all areas, including upgradient reference, except for the City Ship Canal
- Lower IBI in City Ship Canal due to increases in tolerant fish and DELT observations

NYSDEC metrics

- Scores the same in all areas, including upgradient reference, except slightly lower in Area 2
- Scores generally consistent through time

Did Remedy Achieve Remediation Objectives?

Bathymetric Surveys and Surface Sediment Chemistry

- Sediment removal and natural recovery processes achieved sediment remedial goals in large majority of Buffalo River AOC
- City Ship Canal cap remains stable and experienced deposition since construction
- Reductions in surface sediment concentrations were observed between Years 2 and 5 throughout AOC
- Surface sediment concentrations continue to decrease via natural sedimentation and dilution/mixing processes

Biological Monitoring

- Benthic and fish community survey results variable over time
- Buffalo River results similar to reference
- No sediment toxicity to benthic invertebrates based on USGS 2020 toxicity tests
- Community results indicative of a large, urban river system
- Results suggest regional-scale effects, as Buffalo River scores were generally within the range of those for reference locations

Beneficial Use Impairments

- Beneficial Use Impairments (BUIs)
 - Tainting of Fish and Wildlife Flavor BUI removed in 2020
 - Restrictions on Dredging BUI removal expected at end of 2022
 - Degradation of Benthos BUI removal targeted for early 2023
 - Loss of Fish and Wildlife Habitat BUI targeted for early 2023
- Fish tissue and histopathology data are expected early 2024
 - Data will support the evaluation of several additional BUIs

25

Key Take-Home Messages

- The collaborative and cost-sharing approach of the GLLA program expedites clean-up and leads to more cost-effective remedies
- Robust data sets (baseline and post-remediation), based on multiple lines of evidence, contribute to an improved understanding of remedy effectiveness

Thank You